

Correction to A Facile Access to Enantioenriched Isoindolines *via* One-Pot Sequential Cu(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition/Oxidation

Zhao-Lin He, Tang-Lin Liu, Haiyan Tao, and Chun-Jiang Wang* *Org. Lett.* **2012**, *14* (24), 6230–6233. DOI: 10.1021/ol302987h

Supporting Information

An incorrect X-ray structure and CIF file caused misinterpretation of the structures of 5a-r and 7. See below for corrections to the paper and the Supporting Information. Complete corrected Supporting Information and a corrected CIF for 5b are included.

Page 6230: The title should be "A Facile Access to Enantioenriched Isoindolines via One-Pot Sequential Cu(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition/Oxidation".

Page 6230, Abstract text, line 3: "aromatization" should be replaced by "oxidation".

Page 6231, right column, lines 1 and 37; page 6232, right column, lines 3 and 30; page 6233, right column, line 6: "aromatization" should be replace by "oxidation".

Page 6321, right column, line 21, "significant" should be replaced by "partially"; line 23, "efficiently" should be replaced by "partially"; line 34, "keto-isomer" should be replaced by "precursor".

Scheme 1

The Abstract/TOC graphic, Schemes 1–3, Tables 1 and 2, and Figure 1 should be replaced.

We thank Professor Dr. Alex M. Szpilman for his kindly pointing out the mistakes.

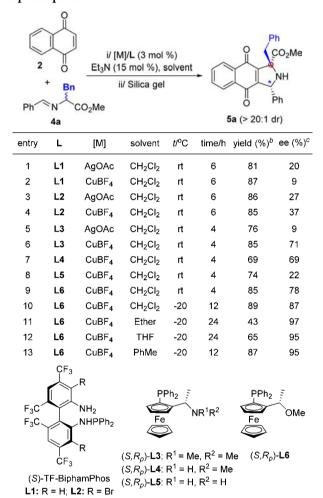
ASSOCIATED CONTENT

Supporting Information

Corrected structures are provided for 5a—r and compound 7. Several compounds have a proton in the spectra between 2.60 and 2.70 ppm that was not reported in the experimental details section; see the updated ¹H NMR reporting for compounds 5a, 5d, 5f, 5g, 5i, and 5o. There are fewer reported ¹H NMR peaks in the experimental details section than in the spectrum for compound(s) 5b and 5n; see the updated ¹H NMR reporting

Scheme 3. Catalyst asymmetric one-pot sequential 1,3-DC/Oxidation of Benzoquinone 6 and imino ester 4a

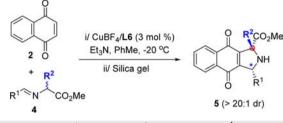
Scheme 2


Received: September 9, 2014

Published: September 30, 2014

Organic Letters

Addition/Correction


Table 1. Optimization of One-Pot and Sequential Catalytic Asymmetric 1,3-DC/Oxidation of Imino Ester 4a with Naphthoquinone 2.^a

"All reactions were carried out with 0.26 mmol of 4a and 0.20 mmol of 2 in 2 mL of solvent. $CuBF_4 = Cu(CH_3CN)_4BF_4$. "Isolated yield. "Ee was determined by HPLC analysis.

for **5b**: 7.88 (d, J = 7.5 Hz) should be replaced by 7.88 (d, J = 7.5 Hz, 1H); **5n**: 7.44 (d, J = 6.9 Hz, 1H) should be replaced by 7.44 (d, J = 6.9 Hz, 2H). There are more reported ¹H NMR peaks in the experimental details section than in the spectrum for compound **5r**; see the updated ¹H NMR reporting for **5r**: 7.40–7.24 (m, 8H) should be replaced by 7.40–7.24 (m, 6H). This material is available free of charge via the Internet at http://pubs.acs.org.

Table 2. Substrates Scope of One-Pot and Sequential Asymmetric 1,3-DC/Oxidation of Imino Ester 4 with Napthoquinone 2^a

entry	\mathbb{R}^1	\mathbb{R}^2	5	yield b (%)	ee ^c (%)
1	Ph (4a)	Bn	5a	86	96
2	p-Cl-C ₆ H ₄ (4b)	Bn	5b	89	95
3	o -Cl-C $_6$ H $_4$ (4c)	Bn	5c	87	94
4	m-Cl-C ₆ H ₄ (4d)	Bn	5d	87	94
5^d	p-CF ₃ -C ₆ H ₄ (4e)	Bn	5e	87	92
6	p-Me-C ₆ H ₄ (4f)	Bn	5f	93	95
7	$o ext{-Me-}C_6H_4$ (4g)	Bn	5g	81	93
8	m-Me-C ₆ H ₄ (4h)	Bn	5h	86	97
9	p-MeO-C ₆ H ₄ (4i)	Bn	5i	81	96
10	o-MeO-C ₆ H ₄ (4j)	Bn	5j	85	94
11^d	2-naphthyl (4k)	Bn	5k	79	97
12	2-furyl (41)	Bn	51	76	94
13	Cy (4m)	Bn	5m	70	94
14	Ph (4n)	Me	5n	82	89
15	Ph (4o)	Et	50	90	94
16 ^d	Ph (4p)	Pr	5p	77	90
17^d	Ph (4q)	ⁱ -Bu	5q	74	93
18^d	Ph (4r)	Ph	5r	86	93

^aUnless otherwise noted, the reaction was carried out with 0.26 mmol of 4 and 0.20 mmol of 2 in 2 mL of toluene at −20 °C. ^bIsolated yield. ^cEe was determined by HPLC analysis. ^dCarried out at 0 °C.

$$= \bigvee_{O} \bigvee_{P \in Cl-C_6H} \bigvee_{P$$

Figure 1. X-ray structure of (1R,3R)-5b.